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Abstract

In this paper we study some basic quantum confinement effects through
investigation of a deformed harmonic oscillator algebra. We show that spatial
confinement effects on a quantum harmonic oscillator can be represented by a
deformation function within the framework of nonlinear coherent states theory.
We construct the coherent states associated with the spatially confined quantum
harmonic oscillator in a one-dimensional infinite well and examine some of
their quantum statistical properties, including sub-Poissonian statistics and
quadrature squeezing.

PACS number: 03.50.Fd

1. Introduction

The harmonic oscillator is one of the models most extensively used in both classical and
quantum mechanics. The usefulness and simplicity make this model a subject of lots of
studies. One of the most important aspects of the quantum harmonic oscillator (QHO) is
its dynamic algebra, i.e. Weyl–Heisenberg algebra. This algebra appears in many areas of
modern theoretical physics, as an example we note that the one-dimensional quantum harmonic
oscillator was successfully used in second quantization formalism [1].

Due to the relevance of Weyl–Heisenberg algebra, some efforts have been devoted to the
study of possible deformations of the QHO algebra [2]. A deformed algebra is a nontrivial
generalization of a given algebra through the introduction of one or more deformation
parameters, such that, in a certain limit of the parameters the non-deformed algebra is
recovered. A particular deformation of the Heisenberg algebra has led to the notion of
f -oscillator [3]. An f -oscillator is a non-harmonic system, that from mathematical point
of view its dynamical variables (creation and annihilation operators) are constructed from a
non-canonical transformation through

Â = âf (n̂), Â† = f (n̂)â†, (1)
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where â and â† are the usual (non-deformed) harmonic oscillator operators with [â, â†] = 1
and n̂ = â†â. The function f (n̂) is called deformation function which depends on the number
of excitation quanta and some physical parameters. The presence of the operator-valued
deformation function causes the Heisenberg algebra of the standard QHO to transform into
a deformed Heisenberg algebra. The nonlinearity in f -oscillators means dependence of the
oscillation frequency on the intensity [4]. On the other hand, in contrast to the standard QHO,
f -oscillators do not have an equal-spaced energy spectrum. For example, if we confine a
simple QHO inside an infinite well, due to the spatial confinement, the energy levels constitute
a spectrum that is not equal spaced. Therefore, in this case it is reasonable to investigate the
corresponding f -oscillator.

The confined QHO can be used to describe confinement effects on physical properties
of confined systems. Physical size and shape of the materials strongly affect the nature,
dynamics of the electronic excitations, lattice vibrations and dynamics of carriers. For
example, in the mesoscopic systems, the dimension of system is comparable with the coherence
length of carriers and this leads to some new phenomena that they do not appear in a bulk
semiconductor, such as quantum interference between carrier’s motion [5]. Recent progress in
growth techniques and development of micromachining technology in designing mesoscopic
systems and nanostructures have led to intensive theoretical [6] and experimental investigations
[7] on electronic and optical properties of those systems. The most important point about the
nanoscale structures is that the quantum confinement effects play the center-stone role. One
can even say, in general, that recent success in the nanofabrication technique has resulted
in great interest in various artificial physical systems (quantum dots, quantum wires and
quantum wells) with new phenomena driven by the quantum confinement. A number of recent
experiments have demonstrated that isolated semiconductor quantum dots are capable of
emitting light [8]. It becomes possible to combine high-Q optical microcavities with quantum
dot emitters as the active medium [9]. Furthermore, there are many theoretical attempts for
understanding the optical and electronic properties of nanostructures especially semiconductor
quantum dots [10]. On the other hand, a nanostructure such as quantum dot is a system that
the carrier’s motion is confined inside a small region, and during the interaction with other
systems, the generated excitations such as phonons, excitons and plasmons are confined in a
small region. In order to describe the physical properties of these excitations one can consider
them as harmonic oscillators.

As another application of deformed algebra we can refer to the notion of parastatistics
[11]. The concept of parastatistics has found many applications in fractal statistics and anyon
theory [12]. In addition to the anyon theory, the parastatistics has found many interesting
applications in supersymmetry and non-commutative quantum mechanics [13].

The construction of generalized deformed oscillators corresponding to well-known
potentials and study of the correspondence between the properties of the conventional potential
picture and the algebraic one has been done [14]. Recently, the generalized deformed algebra
and its associated generalized operators have been considered [15]. By looking at the classical
correspondence of the Hamiltonian, the potential energy and the effective mass function are
obtained. In this contribution, we derive the generalized operators associated with a definite
potential by comparing the physical properties of system and physical results of generalized
algebra.

One of the most interesting features of the QHO is the construction of its coherent states
as the eigenfunctions of the annihilation operator. As is well known [3], one can introduce
nonlinear coherent states (NLCSs) or f -coherent states as the right-hand eigenstates of the
deformed annihilation operator Â. It has been shown [16] that these families of generalized
coherent states exhibit various non-classical properties. Due to these properties and their
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applications, generation of these states is a very important issue in the context of quantum
optics. The f -coherent states may appear as stationary states of the center-of-mass motion
of a trapped ion [17]. Furthermore, a theoretical scheme for generation of these states
in a coherently pumped micromaser within the framework of intensity-dependent Jaynes–
Cummings model has been proposed [18]. Recently, it was shown that it is possible to
construct a special family of NLCSs in the stationary state of an excitor inside a wide quantum
dot [20].

One of the most important questions is the physical meaning of the deformation in the
NLCSs theory. It has been shown [20] that there is a close connection between the deformation
function that appears in the algebraic structure of NLCSs and the non-commutative geometry
of the configuration space. Furthermore, it has been shown recently [21] that a two-mode QHO
confined on the surface of a sphere, can be interpreted as a single-mode deformed oscillator,
whose quantum statistics depends on the curvature of sphere.

Motivated by the above-mentioned studies, in the present contribution we intend to
investigate the spatial confinement effects on physical properties of a standard QHO. It will
be shown that the spatial confinement leads to deformation of a standard QHO. We consider
a QHO confined in a one-dimensional infinite well without periodic boundary conditions,
and we find its energy levels, as well as associated ladder operators. We show that the
ladder operators can be interpreted as a special kind of the so-called f -deformed creation and
annihilation operators [3].

This paper is organized as follows: in section 2, we review some physical properties of
the f -oscillator and its coherent states. In section 3, we consider the spatially confined QHO
in a one-dimensional infinite well and construct its associated coherent states. We shall also
examine some of their quantum statistical properties, including sub-Poissonian statistics and
quadrature squeezing. Finally, we summarize our conclusions in section 4.

2. f -oscillator and nonlinear coherent states

In this section, we review the basics of the f -deformed quantum oscillator and the associated
coherent states known in the literature as nonlinear coherent states. At first, to investigate one
of the sources of deformation we consider an eigenvalue problem for a given quantum physical
system and we focus our attention on the properties of creation and annihilation operators that
allow us to make transition between the states of discrete spectrum of the system Hamiltonian
[22]. As usual, we expand the Hamiltonian in its eigenvectors

Ĥ =
∞∑
i=0

Ei |i〉〈i|, (2)

where we have chosen E0 = 0. We introduce the creation (raising) and annihilation (lowering)
operators as follows:

â† =
∞∑
i=0

√
Ei+1|i + 1〉〈i|, â =

∞∑
i=0

√
Ei |i − 1〉〈i|, (3)

so that â|0〉 = 0. These ladder operators satisfy the following commutation relation:

[â, â†] =
∞∑
i=1

(Ei+1 − Ei)|i〉〈i|. (4)

Obviously if the energy spectrum is equally spaced that is, it should be linear in quantum
numbers, as in the case of ordinary QHO, then Ei+1 − Ei = c, where c is a constant and in
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this condition the commutator of â and â† becomes a constant (a rescaled Weyl–Heisenberg
algebra). On the other hand, if the energy spectrum is not equally spaced, the ladder operators
of the system satisfy a deformed Heisenberg algebra, i.e. their commutator depends on the
quantum numbers that appear in the energy spectrum. This is one of the most important
properties of the quantum f -oscillators [3].

An f -oscillator is a non-harmonic system characterized by a Hamiltonian of the harmonic
oscillator form

ĤD = �

2
(ÂÂ† + Â†Â) (h̄ = 1), (5)

(Â = âf (n̂)) with a specific frequency � and deformed boson creation and annihilation
operators defined in (1). The deformed operators obey the commutation relation

[Â, Â†] = (n̂ + 1)f 2(n̂ + 1) − n̂f 2(n̂). (6)

The f -deformed Hamiltonian ĤD is diagonal on the eigenstates |n〉 in the Fock space and its
eigenvalues are

En = �

2
[(n + 1)f 2(n + 1) + nf 2(n)]. (7)

In the limit f → 1, the ordinary expression En = �
(
n + 1

2

)
and the usual (non-deformed)

commutation relation [â, â†] = 1 are recovered.
Furthermore, by using the Heisenberg equation of motion with Hamiltonian (5)

i
dÂ

dt
= [Â, ĤD], (8)

we obtain the following solution for the f -deformed operators Â and Â†:

Â(t) = e−i�G(n̂)t Â(0), Â†(t) = Â†(0) ei�G(n̂)t , (9)

where

G(n̂) = 1
2 ((n̂ + 2)f 2(n̂ + 2) − n̂f 2(n̂)). (10)

In this sense, the f -deformed oscillator can be interpreted as a nonlinear oscillator whose
frequency of vibrations depends explicitly on its number of excitation quanta [4]. It is
interesting to point out that recent studies have revealed strictly physical relationship between
the nonlinearity concept resulting from the f -deformation and some nonlinear optical effects,
e.g., Kerr nonlinearity, in the context of atom–field interaction [23].

The nonlinear transformation of the creation and annihilation operators leads naturally
to the notion of nonlinear coherent states or f -coherent states. The nonlinear coherent states
|α〉f are defined as the right-hand eigenstates of the deformed operator

Â|α〉f = α|α〉f . (11)

From equation (11) one can obtain an explicit form of the nonlinear coherent states in a number
state representation

|α〉f = C

∞∑
n=0

αndn|n〉, (12)

where the coefficients dn’s and normalization constant C are, respectively, given by

d0 = 1, dn = (
√

n![f (n)]!)−1, [f (n)]! =
n∏

j=1

f (j), C =
( ∞∑

n=0

d2
n |α|2n

)− 1
2

.

(13)
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In recent years the nonlinear coherent states have been paid much attentions because they
exhibit nonclassical features [16] and many quantum optical states, such as squeezed states,
phase states, negative binomial states and photon-added coherent states can be viewed as a
sort of nonlinear coherent states [24].

3. A quantum harmonic oscillator in a one-dimensional infinite well

3.1. The f -deformed oscillator description of a confined QHO

In this section we consider a quantum harmonic oscillator confined in a one-dimensional
infinite well. Many attempts have been made to solve this problem (see [25, 26], and references
therein). In most of those works, the authors tried to solve the problem numerically. But in our
consideration we try to solve the problem analytically, to reveal the relationship between the
confinement effect and given deformation function. We start from the Schrödinger equation
(h̄ = 1) [

− 1

2m

d2

dx2
+

1

2
kx2 + V (x)

]
ψ(x) = Eψ(x), (14)

where

V (x) =
{

0 −a � x � a

∞ elsewhere.

According to the approach introduced in the previous section, we can obtain raising and
lowering operators from the spectrum of the Schrödinger operator. On the other hand, by
comparing the energy spectrum of a particular system with the energy spectrum of the general
f -deformed oscillator (7), one could obtain deformed raising and lowering operators. Hence,
we need an analytical expression for energy spectrum of the system which explicitly shows
dependence on special quantum numbers. The original problem, a confined QHO (14), can
be solved only by using the approximation methods. When applying perturbation theory, one
is usually concerned with a small perturbation of an exactly solvable Hamiltonian system. In
the case of the confined QHO we deal with three limits. Inside the well, for small values of
position we have a harmonic oscillator, for large values we have an infinite well and at the
positions of the boundaries the two potentials have the same power. Hence the approximation
method cannot lead to acceptable results. Therefore, we model the original problem by a
model potential that has mathematical behavior such as a confined QHO. Instead of solving
the Schrödinger equation for the QHO confined between infinite rectangular walls in positions
±a, we propose to solve the eigenvalue problem for the potential

V (x) = 1

2
k

(
tan(δx)

δ

)2

, (15)

where δ = π
2a

is a scaling factor depending on the width of the well. This potential models a
QHO placed in the center of the rectangular infinite well [27]. The potential V (x) (15) fulfils
two asymptotic requirements: (1) V (x) → 1

2kx2 when a → ∞ (free harmonic oscillator

limit). (2) V (x) at equilibrium position has the same curvature as a free QHO,
[

d2V
dx2

]
x=0 = k.

This model potential belongs to the exactly solvable trigonometric Pöschl–Teller potentials
family [28]. Stationary coherent states for a special kind of this potential have been considered
[29].

Now we consider the following equation:[
− 1

2m

d2

dx2
+

1

2
k

(
tan(δx)

δ

)2

− E

]
ψ(x) = 0. (16)
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Table 1. Calculated energy levels of the confined QHO in a one-dimensional infinite well by using
our model potential in comparison with the numerical results given in [25].

State Boundary size Model potential Numerical results

0 a = 0.5 4.984 953 12 4.951 129 32
0 1 1.410 893 25 1.298 459 83
0 2 0.677 453 92 0.537 461 20
0 3 0.573 214 64 0.500 391 08
0 4 0.540 037 28 0.500 000 49

1 a = 0.5 19.889 661 57 19.774 534 17
1 1 5.466 380 33 5.075 582 01
1 2 2.340 786 91 1.764 816 43
1 3 1.856 721 76 1.506 081 52
1 4 1.697 218 13 1.500 014 61

2 a = 0.5 44.663 974 41 44.452 073 82
2 1 11.989 268 50 11.258 825 78
2 2 4.620 970 17 3.399 788 24
2 3 3.414 384 55 2.541 127 25
2 4 3.008 611 55 2.500 201 17

3 a = 0.5 79.307 891 66 78.996 921 15
3 1 20.979 557 77 19.899 696 49
3 2 7.518 003 71 5.584 639 07
3 3 5.246 203 03 3.664 219 64
3 4 4.474 217 54 3.501 691 53

4 a = 0.5 123.821 413 30 123.410 710 50
4 1 32.437 248 14 31.005 254 50
4 2 11.031 887 52 8.368 874 42
4 3 7.352 177 18 4.954 180 47
4 4 6.094 036 10 4.509 640 99

To solve this equation analytically, we use the factorization method [30]. By changing the
variable and some mathematical manipulation, the corresponding energy eigenvalues are found
as

En = γ
(
n + 1

2

)2
+

√
γ 2 + ω2

(
n + 1

2

)
+

γ

4
, (17)

where γ = 4π2

32a2m
and ω =

√
k
m

is the frequency of the QHO. The first term in the energy
spectrum can be interpreted as the energy of a free particle in a well, the second term denotes
the energy spectrum of the QHO, and the last term shifts the energy spectrum by a constant
amount. It is evident that if a → ∞ then γ → 0 and the energy spectrum (17) reduces to the
spectrum of a free QHO. As is clear from (17), different energy levels are not equally spaced.
Hence, confining a free QHO leads to deformation of its dynamical algebra and we can interpret
the parameter γ as the corresponding deformation parameter. In table 1 the numerical results
associated with the original potential, given in [25], are compared with the generated results
from the model potential under consideration. As is seen, the results are in good agreement
when the boundary size is of the order of characteristic length of the harmonic oscillator. The
original oscillator potential becomes infinite suddenly when it approaches the boundaries of
the well, while the model potential is smooth and approaches to the infinity asymptotically.
Therefore, the model potential (15) is more appropriate for the physical systems.

6



J. Phys. A: Math. Theor. 42 (2009) 045403 M Bagheri Harouni et al

If we normalize equation (17) to the energy quanta of the simple harmonic oscillator and

introduce the new variables n + 1
2 = h,

√
γ 2

ω2 + 1 = η and γ ′ = γ

ω
then it takes the following

form:

El = γ ′h2 + ηh +
γ ′

4
. (18)

By comparing this spectrum with the energy spectrum of an f -deformed oscillator, given by
(7), we find the corresponding deformation function as

f (n̂) =
√

γ ′n̂ + η. (19)

Furthermore, the ladder operators associated with the confined oscillator under consideration
can be written in terms of the conventional (non-deformed) operators â , â† as follows:

Â = â
√

γ ′n̂ + η, Â† =
√

γ ′n̂ + ηâ†. (20)

These two operators satisfy the following commutation relation:

[Â, Â†] = γ ′(2n̂ + 1) + η. (21)

It is obvious that in the limiting case a → ∞ (γ ′ → 0, η → 1), the right-hand side of the
above commutation relation becomes independent of n̂, and the deformed algebra reduces to
a conventional Weyl–Heisenberg algebra for a free QHO.

Classically, a harmonic oscillator is a particle that is attached to an ideal spring and
can oscillate with specific amplitude. When that particle is confined, boundaries can affect
the particle’s motion if the boundary position is a smaller distance in comparison with the
characteristic length that the particle oscillates within. This characteristic length for the QHO
is given by h̄

mω
(h̄ = 1) , and if 2a � 1

mω
, then the presence of the boundaries affects the

behavior of the QHO, otherwise it behaves like a free QHO. Therefore, one can interpret
l0 = 1

mω
as a scale length where the deformation effects become relevant.

3.2. Coherent states of confined oscillator

Now, we focus our attention on the coherent states associated with the QHO under
consideration. As usual, we define the coherent states as the right-hand eigenstates of the
deformed annihilation operator

Â|β〉f = β|β〉f . (22)

From (22) and using the NLCS formalism introduced in (11)–(13) the explicit form of the
corresponding NLCS of the confined QHO is written as

|β〉f = N
∑

n

βn

√
n!(γ ′n + η)!

|n〉, (23)

where N = ( ∑
n

|β|2n

[f (n)!]2n!

)− 1
2 is the normalization factor, β is a complex number and the

deformation function f (n) is given by equation (19). The ensemble of states |β〉f labelled by
the single complex number β is called a set of coherent states if the following conditions are
satisfied [31]:

• normalizability

f 〈β|β〉f = 1, (24)

• continuity in the label β

|β − β ′| → 0 ⇒ ‖|β〉f − |β ′〉f ‖ → 0, (25)

7
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• resolution of the identity∫
c

d2β|β〉f f 〈β|w(|β|2) = Î , (26)

where w(|β|2) is a proper measure that ensures the completeness and the integration is
restricted to the part of the complex plane where normalization converges.

The first two conditions can be proved easily. For the third condition, we choose the
normalization constant as

N 2 = |β|η
I

γ ′
η (2|β|)

, (27)

where

I γ ′
η (x) =

∞∑
s=0

1

s!(γ ′s + η)!

(x

2

)2s+η

(28)

is similar to the modified Bessel function of the first kind of the order η with the series
expansion Iη(x) = ∑∞

s=0
1

s!(s+η)!

(
x
2

)2s+η
. Resolution of the identity of the deformed coherent

states |β〉f can be written as∫
d2β|β〉f w(|β|)f 〈β| = π

∑
n

|n〉〈n| 1

n!(γ ′n + η)!

∫ ∞

0
d|β||β||β|2n |β|η

I
γ ′
η (2|β|)

w(|β|). (29)

Now we introduce the new variable |β|2 = x and the measure

w(
√

x) = 8

π
Iγ ′
η (2

√
x)Km(2

√
x)x

l
2 , (30)

where Km(x) is the modified Bessel function of the second kind of the order m,m = (γ ′−1)n+
α, and l = (γ ′ − 1)n + 1. Using the integral relation

∫ ∞
0 Kν(t)t

μ−1 dt = 2μ−2�
(

μ−ν

2

)
�

(
μ+ν

2

)
[32], we obtain∫

d2β|β〉f w(|β|)f 〈β| =
∑

n

|n〉〈n| = Î . (31)

We therefore conclude that the states |β〉f qualify as coherent states in the sense described by
conditions (24)–(26).

We now proceed to examine some nonclassical properties of the nonlinear coherent states
|β〉f . As an important quantity, we consider the variance of the number operator n̂. Since for
the coherent states the variance of the number operator is equal to its average, deviation from
the Poissonian statistics can be measured with the Mandel parameter [33]

M = (
n)2 − 〈n̂〉
〈n̂〉 . (32)

This parameter vanishes for the Poisson distribution, is positive for the super-Poissonian
distribution (bunching effect) and is negative for the sub-Poissonian distribution (antibunchig
effect). Figure 1 shows the size dependence of the Mandel parameter for different values of
|β|2. As is seen, the Mandel parameter exhibits the sub-Poissonian statistics and with further
increasing values of a it is finally stabilized at an asymptotical zero value corresponding to
the Poissonian statistics. In addition, the smaller the parameter |β|2 is, the more rapidly the
Mandel parameter tends to the Poissonian statistics.

As another important nonclassical property we examine the quadrature squeezing. For
this purpose we first consider the conventional quadrature operators X̂a and Ŷa defined in
terms of nondeformed operators â and â† as [34]

X̂a = 1

2
(â eiφ + â† e−iφ), Ŷa = 1

2i
(â eiφ − â† e−iφ). (33)

8
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− 0.05

0

M

Figure 1. Plots of the Mandel parameter versus the dimensionless parameter al = a
l0

. For

|β|2 = 0.5 (dashed curve), for |β|2 = 1 (longdashed curve), for |β|2 = 1.5 (solid curve) and for
|β|2 = 4.0 (bold curve).

0 1 2 3 4 5 6
Phi

− 0.6

− 0.4

− 0.2

0

0.2

0.4

0.6

s

Figure 2. Plot of sX̂a
versus φ for |β|2 = 4. The dashed, longdashed and solid curves respectively

relate to a = 2.5, a = 1, a = 0.5 (the values of a are renormalized to l0).

In this equation, φ is the phase of quadrature operators which can effectively affect the
squeezing properties. The commutation relation for â and â† leads to the following uncertainty
relation:

(
X̂a)
2(
Ŷa)

2 � 1
4 |〈[X̂a, Ŷa]〉|2 = 1

16 . (34)

For the vacuum state |0〉, we have (
X̂a)
2 = (
Ŷa)

2 = 1
4 and hence (
X̂a)

2(
Ŷa)
2 = 1

16 .
A given quantum state of the QHO is said to be squeezed when the variance of one of the
quadrature components X̂a and Ŷa satisfies the relation

(
Ôa)
2 < (
Ôa)

2
vacuum = 1

4 (Ôa = X̂a or Ŷa). (35)

The degree of quadrature squeezing can be measured by the squeezing parameter sÔ defined
by

sÔ = 4(
Ôa)
2 − 1. (36)

Then, the condition for squeezing in the quadrature component can be simply written as
sÔ < 0. In figure 2 we have plotted the parameter sX̂a

corresponding to the squeezing of X̂a

with respect to the phase angle φ for four different values of a. As is seen, the state |β〉f
exhibits squeezing for different values of the confinement size, and when al = a

l0
= 2.5, the

9
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s

Figure 3. Plots of sX̂a
versus the dimensionless parameter al = a

l0
for different phases and

|β|2 = 1. Dashed curve, solid curve and bold curve, respectively, correspond to φ = 100, φ = 110
and φ = 90.
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Figure 4. Plots of deformed squeezing parameter SXA
versus the dimensionless parameter al = a

l0
.

The dashed curve, longdashed curve, solid curve and bold curve respectively, correspond to
|β|2 = 1, |β|2 = 1.5, |β|2 = 2.5 and |β|2 = 4.

quadrature X̂a exhibits squeezing for all values of the phase angle φ. Figure 3 shows the plot
of sX̂a

versus the dimensionless parameter al = a
l0

for different values of the phase φ. As is

seen, with the increasing value of al

(
a
l0

)
, the quadrature component tends to zero according to

the vacuum fluctuation. Let us also consider the deformed quadrature operators X̂A and ŶA

defined in terms of the deformed operators Â and Â† as

X̂A = 1

2
(Â eiφ + Â† e−iφ), ŶA = 1

2i
(Â eiφ − Â† e−iφ). (37)
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By considering the commutation relation (6) for the deformed operators Â and Â†, the
squeezing condition for the deformed quadrature operators ÔA (= X̂A, ŶA) can be written as

S = 4(
ÔA)2 − 〈(n̂ + 1)f 2(n̂ + 1)〉 + 〈n̂f 2(n̂)〉 < 0. (38)

In figure 4 we have plotted the parameter SX̂A
versus the dimensionless parameter a

l0
for four

different values of |β|2. As is seen, the deformed quadrature operator exhibits squeezing for
all values of a. Furthermore, with the increasing value of |β|2 the squeezing of the quadrature
X̂A is enhanced.

4. Conclusion

In this paper, we have considered the relation between the spatial confinement effects and
a special kind of f -deformed algebra. We have found that the confined simple harmonic
oscillator can be interpreted as an f -oscillator, and we have obtained the corresponding
deformation function. By constructing the associated NLCSs, we have examined the effects
of the confinement size on non-classical statistical properties of those states. The result shows
that the stronger confinement leads to the strengthening of non-classical properties. We hope
that our approach may be used in the description of phonons in the strong excitation regimes,
photons in a microcavity and different elementary excitations in confined systems. The work
in this direction is in progress.
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